

Tutorials for Arduino

 Service-Team

This version of our tutorials in english language is a new one (april 2016). Please contact us in
case you notice any mistakes: info@funduino.de

Have fun with our tutorials! Kind regards,

 Service Team

mailto:info@funduino.de

Contents
Preface...2

1. Preface to the Arduino tutorials...2
2. Hardware and Software...3

2.1 Hardware...3
2.1.2 Description of typical equipment..4
2.1.2.1 Breadboard..4
2.1.2.2 LED (light emitting diode)..4

2.2 Software...5
2.2.1 Installation..5
2.2.1.1 Installation and set up of the Arduino software...5
2.2.1.2 Installation of the USB driver...7

3. Programming..8
Basic structure of a sketch:..9

1. Name variable...9
2. Setup (absolutely necessary for the program)..9

Tutorials:...11
Blinking LED...11
Alternately blinking LED...15
Fading LED..17
Light and sound...20
Push button and LED...22
RGB LED...25
Motion detector..33
Photo resistor...37
Potentiometer...41
Temperature measurement..44
Measurement of distance..49
Usage of an infrared remote..57
Control a servo...62
LCD Display...63
Relay shield...67
Stepper..69
Moisture sensor...72
Drop sensor...76
RFID Kit...80

Tutorials with additional Equipment...90
Keypad shield..90
I²C Display...94

2

Preface

1. Preface to the Arduino tutorials

These tutorials are meant to be an entry to the Arduino basis. Beginners should get an

interesting lead-in the world of Arduino. Our tutorials are all based on practical tasks with

theoretical introductions at the beginning. We really recommend to read the theoretical part

to successfully complete the practical tasks.

These tutorials were created in the context of a teaching unit. They can be used for free to

learn about Arduino, but it's not allowed to copy and use the tutorials without any permission.

These tutorials have been created carefully and are continuously maintained, however we can't

give any warranty about the accuracy and completeness of the tutorials.

 For the practical tasks you'll need some technical equipment. On our website

www.fu nduinoshop.com you can buy especially customized Funduino kits for our tutorials.

What is actually Arduino?

Arduino is an Open-source-electronic-prototyping-base for simple used hardware and software

in the field of microcontrolling. It is suitable to realize fascinating projects in a short time.

Many of them can be found on Youtube under „Arduino“. It is mostly used by artists, designer or

tinkers to realize creative ideas.

But Arduino is also increasingly used by universities and schools to teach an interesting and

simple beginning to the world of microcontrolling.

3

http://www.funduinoshop.de/
http://www.funduinoshop.de/

2. Hardware and Software

The term „Arduino“ ist mostly used for both components. The hardware (Arduino Boards)

and the corresponding software (Arduino).

2.1 Hardware

The Arduino hardware is a so-called microcontrolling board (Following called „board“).

Basically it is a circuit board with many electronic parts around the actual microcontroller.

On the edge of the board are many pins with whom it is possible to connect different

components. Some of them are for example: Switches, LED's, Ultrasonic sensors,

temperature sensors, displays, stepper, etc..

There are different kind of boards, that can be used with the Arduino sofware. Different

sized “official” boards, with the official “Aduino” name on it, but also many, mostly

cheaper, but equivalent Arduino “fitting” boards. Typical official boards are called Arduino

UNO, Arduino MEGA, Arduino Mini, etc. Arduino compatible boards are for example

Funduino UNO, Funduino MEGA, Freeduino, Seeduino, Sainsmart UNO etc..

4

2.1.2 Description of typical equipment

Beside sensors and actuators you need, as a base for quick and flexible experimental

setups, jumper cable combined with a breadboard. This way you won't need to solder.

Furthermore the LEDs are useful to check the signal output of the board.

2.1.2.1 Breadboard

A Breadboard is a helpful tool to build circuits without any soldering. Certain contacts are

connected with each other. Therefore it is possible to connect many cables with each other

without soldering or screwing them together.

This image below shows in color, which contacts are connected.

2.1.2.2 LED (light emitting diode)

With LEDs it is possible to check the results of projects real quick. Because of that they're

useful for almost every Arduino project. On the internet are many information about LEDs.

The most important information:

The electricity can only get through the LED in one direction. So the LED has to be

connected the right way to work. There is a longer and a shorter contact at the LED.

The longer one is the positive (+) and the shorter one is the negative (–) contact.

5

The LED is only designed for a specific voltage. If there isn't enough voltage the LED

won't shine as bright as it should. If there's to much voltage for the LED, it will get really

hot (ATTENTION) and burn out.

Typical voltage data for the different colors of LEDs: blue: 3,1V, white: 3,3V, green: 3,7V,

yellow: 2,2V, red: 2,1V. The voltage on the microcontrollerboards is 5V. So the LED

shouldn't be connected to the board directly, but with a resistor between it in the circuit.

Non-committal recommendation for resistors at different LEDs (while connecting to the

5V pins on the microcontroller boards):

LED: white red yellow green blue IR

resistor: 100 Ohm 200 Ohm 200 Ohm 100 Ohm 100 Ohm 100 Ohm

2.2 Software

The software that is used to program the microcontroller, is open-source-software and can

be downloaded for free on www.arduino.cc. With this “Arduino software” you can write little

programs witch the microcontroller should perform. This programs are called “Sketch”.

In the end the sketches are transferred to the microcontroller by USB cable.

More on that later on the subject “programing”.

2.2.1 Installation

Now one after another the Arduino software and the USB driver for the board have to be

installed.

2.2.1.1 Installation and set up of the Arduino software

1. Download the Arduino software on www.arduino.cc and install it on the computer (The

microcontroller NOT connected to the PC). After that you open the software file and start

6

http://www.arduino.cc/
http://www.arduino.cc/

the program named arduino.exe.

Two set ups on the program are important and should be considered.

a) The board that you want to connect, has to be selected on the arduino software.

The “Funduino Uno” is here known as “Arduino / Genuino Uno”.

b) You have to choose the right “Serial-Port”, to let the Computer know to which port the

board has been connected. That is only possible if the USB driver has been installed

correctly. It can be checked this way:

7

At the moment the Arduino isn't connected to the PC. If you now choose “Port”, under the

field “Tool”, you will already see one or more ports here (COM1/ COM2/ COM3…).

The quantity of the shown ports doesn't depend on the quantity of the USB ports on the

computer. When the board gets connected to the computer, YOU WILL FIND ONE MORE

PORT.

2.2.1.2 Installation of the USB driver

How it should be:

1. You connect the board to the computer.

2. The Computer recognizes the board and suggests to install a driver automatically.

ATTENTION: Wait a second! Most of the time the computer can't find the driver

automatically to install it. You might choose the driver by your own to install it. It can be

found in the Arduino file under “Drivers”.

Control: At the control panel of the Computer you can find the “Device manager”. If the

board has been installed successfully, it should appear here. When the installation has

failed, there is either nothing special to find or you will find an unknown USB device with a

8

yellow exclamation mark. In this case: Click on the unknown device and choose “update

USB driver”. Now you can start over with the manual installation.

3. Programming

Now we can start properly. Without to much theoretical information we start directly with

programming. Learning by doing. On the left side you can find the “sketches”, on the right

the accompanying explanation for the commands in grey. If you work trough the tutorials

with this system, you will soon understand the code and be able to use it by yourself. Later

on you can familiarize yourself with other features. These tutorials are only meant as first

steps to the Arduino world. All possible program features and codes are referred on

www.arduino.cc under „reference“.

First of all a short explanation for possible error reports that can appear while working with

the Arduino software. The two most common ones are:

1) The board is not installed right or the

wrong board is selected. After uploading

the sketch, there will appear an error report

underneath the sketch. It looks like the

one in the picture on the right. The note

“not in sync” shows up in the error report.

9

http://www.arduino.cc/

2.) There is a mistake in the sketch.

For example, a word is misspelled or a

bracket is missing. In the example on the

left the last semicolon in the sketch is

missing. In this Case the error report

often starts with “excepted..”. This means

that the program is still expecting

something that is missing.

Basic structure of a sketch:

A sketch can be divided in three parts.

1. Name variable

In the first part elements of the program are named (This will be explained in program no.

3). This part is not absolutely necessary.

2. Setup (absolutely necessary for the program)

The setup will be performed only once. Here you are telling the program for example what

Pin (slot for cables) should be an input and what should be an output on the boards.

Defined as Output: The pin should put out a voltage. For example: With this pin a LED is

meant to light up.

10

Defined as an Input: The board should read out a voltage. For example: A switch is

actuated. The board recognized this, because it gets a voltage on the Input pin.

3. Loop (absolutely necessary for the program)

This loop part will be continuously repeated by the board. It assimilates the sketch from

beginning to end and starts again from the beginning and so on.

Let's start!

11

Tutorials:

Blinking LED

Task: Get a LED to blink.

Required equipment: Just the microcontroller board with the USB cable.

On the board a LED is already build on the pin 13 (for test purpose). This LED often

already blinks, after connecting a new board to the computer, because during

manufacturing the blink program is uploaded for test purposes. We are going to program

this blinking by ourself.

Circuit:

The meant LED is circled in red on the image above.

You only have to connect the board properly with the computer.

1.1 First part of the program: Name variables

– First we don't do anything here.

12

1.2 Second part of the program: Setup

We only have one output – Pin 13 should put out voltage (The LED should light up.).

We start writing in the white area of the arduino software:

void setup() //The setup begins here

{ //opening curly bracket – A program part begins here

} //closing curly bracket – A program part is ending here

Now we are going to write the setup information between the curly brackets.

In this case: “pin 13 is supposed to be an output” :

void setup() //The setup begins here

{ //A program part begins here

pinMode(13, OUTPUT); //Pin 13 is supposed to be an ouput.

} //A program part is ending here.

13

1.3 Third part of the program: Loop (main part):

void setup() //The setup begins here

{ //A program part begins here

pinMode(13, OUTPUT); //Pin 13 is supposed to be an ouput.

} //A program part is ending here.

void loop() //The main part of the program begins here

{ //A program part begins here

} //A program part is ending here.

Now we bring in the loop part (main part).

THIS IS THE COMPLETE SKETCH:

void setup() //The setup begins here

{ //A program part begins here

pinMode(13, OUTPUT); //Pin 13 is supposed to be an ouput.

} //A program part is ending here.

void loop() //The main part of the program begins here

{ //program part begins here

digitalWrite(13, HIGH); //Turn on the voltage on pin 13 (LED on)

delay(1000); //Wait for 1000 milliseconds (one second)

digitalWrite(13, LOW); //Turn off the voltage on pin 13 (LED off)

delay(1000); //Wait for 1000 milliseconds (one second)

} //Program ends here

14

Done! The sketch should look just like

the one in the image on the right. Now

we have to upload it to the board. By

clicking on the button with the arrow on

the upper left of the software, you will

upload the sketch to the board.

1.4 Now you have the option to modify the program. Example: You want the LED to

blink really fast. Therefore we will shorten the waiting time (From 1000ms to 200ms)

void setup() //The setup begins here

{ //A program part begins here

pinMode(13, OUTPUT); //Pin 13 is supposed to be an ouput.

} //A program part is ending here.

void loop() //The main part of the program begins here

{ //program part begins here

digitalWrite(13, HIGH); //Turn on the voltage on pin 13 (LED on)

delay(200); //Wait for 200 milliseconds

digitalWrite(13, LOW); //Turn off the voltage on pin 13 (LED off)

delay(200); //Wait for 200 milliseconds

} //program part ends.

The new modified sketch has to be uploaded to the board again. Now if everything has

worked properly the LED should blink faster.

15

Alternately blinking LED

Task: We want to let two LEDs blink alternately.

Required equipment: Microcontroller / two LEDs (blue) / two resistors with 100 Ohm /

Breadboard / cables

Setup:

16

Code:

void setup()

{ //We are starting with the setup

pinMode(7, OUTPUT); //Pin 7 is defined as output

pinMode(8, OUTPUT); //Pin 8 is defined as output

}

void loop()

{ //The main part starts

digitalWrite(7, HIGH); //turn on the LED on pin 7

delay(1000); //wait for 1000 milliseconds

digitalWrite(7, LOW); //turn off the LED on pin 7

digitalWrite(8, HIGH); //turn on the LED on pin 8

delay(1000); //wait for 1000 milliseconds

digitalWrite(8, LOW); //turn off the LED on pin 8

} //Here at the end of the loop the program starts again from the beginning of

//the loop part. So..turn on LED on pin 7..wait for 1000

//milliseconds..etc..etc..

17

Fading LED

Task: A LED should pulsating get brighter and darker (fade).

Required equipment: Microcontroller / one LED (blue) / resistor with 100 Ohm /

Breadboard / cables

Setup:

The Arduino is a digital microcontroller. It only knows “5 Volt on” and “5 Volt off” on its

outputs. But to vary the brightness of an LED, it ought be vary the voltage on the outputs.

For example 5 Volts if the LED shines bright, 4 Volts if it shines a bit darker and so on.

THIS DOESN'T WORK ON DIGITAL PINS. But there is an other option. It is called pulse

width modulation (short PWM). PWM lets the 5 V voltage fade. The voltage is turned on

and off for milliseconds. With a really high PWM the 5 V signal nearly gets constant on the

pin. With a low PWM it is the other way around and the 5 V signal is barely there (This is

only a reduced summary, so you should look it up on the internet, if you need more

information). With this PWM it is possible to get nearly the same effect on a LED, as if the

18

voltage would get varied. Not every pin on the board has the PWM function. The pins with

this function are specially labelled, for example with a little wave in front of the pin number

(see image on the bottom of page 22).

Let's go!

Code:

int LED=9; //The word “LED” stands for the number 9.

int brightness=0; //The word “brightness” stands for the value that is emitted

//at the PWM.The number “0” is only used as an initial value.

int fading=5; //”fading” sets up the speed of the fading.

void setup()

{ // The setup begins here.

pinMode(LED, OUTPUT); //The pin with the LED is supposed to be an output.

}

void loop()

{ //The loop part begins here.

analogWrite(LED, brightness); //The function analogWrite is used to activate

// the PWM output on the pin with the LED. The value of the PWM is saved under

//the word “brightness”. In this case it is “0”.

brightness=brightness + fading; // Now we modify the value of the PWM output. We

//add the value of the fading to the value of the brightness. In this case:

//brightness = 0+5. The new value that is standing for brightness isn't 0 any

// longer but 5. When the program has ran through the loop part once it will

//start over again. The next pass the value will be 10. After that it will be

// 15... etc.

delay(25); //The LED should only stay bright for a really short time like 25

//milliseconds. If you reduce that time the fading will also get faster.

19

if(brightness==0 || brightness== 255){

fading= -fading;

} //Meaning of this command: If the Value of brightness will reach 0 OR 255, the

//value of fading will change from negative to positive and the other way

//around. The Reason why is, that while the program is running trough the loop

//part, the LED will shine brighter and brighter. But at the point of 255 as a

//value of the PWM, it will reach it's maximum. At this point the LED should get

//darker step by step. Because of this the fading will be negate at this point.

//This means the next time the program runs through the loop the part

//“brightness=brightness+fading;” will effect that the LED gets darker. Example:

//“brightness=255+(-5)”. The value of brightness will be 250 after that. The

//next time it will be 245..etc. As the value of brightness will reach 0 the

//value of fading will get positive again.

} // With this bracket the loop part ends.

20

Light and sound

Task: A LED and a piezo speaker are supposed to blink or beep continuously.

Required equipment: Microcontroller / one LED / resistor with 200 Ohm / Breadboard /

piezo speaker / cables

Setup:

21

Code:

int LED=4; //this time we also going to use the first part of the program. Here

//we are going to put in variables. This means that there will be a letter or a

//word standing for a number. In this example the LED is connected to pin 4 and

//the speaker to pin 5, so we rename pin 4 and pin 5, to avoid confusion. The

//word “LED” now stands for the number 4 and the word “beep” for the number 5.

int beep=5;

void setup()

{ //We are starting with the setup

pinMode(LED, OUTPUT); //pin 4 (pin “LED”) is supposed to be an output

pinMode(beep, OUTPUT); //Pin 5 (pin “beep”) is supposed to be an output

}

void loop()

{ //The main part starts

digitalWrite(LED, HIGH); //turn on the LED

digitalWrite(beep, HIGH); //turn on the speaker

delay(1000); //wait for 1000 milliseconds (sound and light)

digitalWrite(LED, LOW); //turn off the LED

digitalWrite(beep, LOW); //turn off the speaker

delay(1000); //wait for 1000 milliseconds (no sound and no light)

} //Here at the end of the loop the program starts again from the beginning of

//the loop. So it will beep and light up again. If you change the break (delay)

//it will be either beep and light up faster or slower.

22

Push button and LED

Task: After pushing the button an LED is supposed to light up for 5 seconds.

Required equipment: Arduino / one LED (blue) / one resistor with 100Ohm / one resistor

with 1K Ohm (1000 Ohm) / Breadboard / Cables / Push button

The digital pins of the microcontroller are not only able to put out voltage, they are also

able to read out voltage. We are going to try this with the following program. This time

there is something special in the setup. If we would simply connect the push button with

the microcontroller and push the button, there would be voltage on the pin. You can

imagine it like many electrons floating around the pin. When you now release the button,

there wouldn't get any more electrons to the pin. Now the difficulty: The electrons that are

already floating around the pin are only escaping extremely slow. So the microcontroller

thinks that the button has been pushed longer than it actually has been. The

microcontroller thinks that the button has been pushed until the electrons have escaped

completely from the pin. This problem can be fixed by grounding the pin with a 1000 Ohm

(1K Ohm) resistor. Now the electrons are able to escape from the pin faster and the

microcontroller recognizes that the button only has been pushed briefly. The resistor is

called “PULLDOWN”- resistor, because the resistors is always “pulling down” the voltage

to 0V. ATTENTION: If you are using a smaller valued resistor, you can get an electrical

short on the microcontroller while pushing the button.

23

Setup:

Code:

int LEDblue=6; //The word “LEDblue” stands for the value 6.

int button=7; //The word “button” stands for the value 7.

int buttonstatus=0; //The word “buttonstatus” stands for the value 0. Later

//on there will be safed wheter the button is pushed or not.

void setup()

{ //The setup starts here

pinMode(LEDblue, OUTPUT); //The pin connected to the LED (pin 6) is an output

pinMode(button, INPUT); //The pin connected to the button (pin 7) is an input.

24

}

void loop()

{ //with this bracket the loop part starts

buttonstatus=digitalRead(button); //The value on pin 7 is read out (command:

//digitalRead). The result will be safed under “buttonstatus”. (HIGH means 5V

//and LOW means 0V)

if (buttonstatus == HIGH) //If the button gets pushed (high voltage value)...

{ //open program part of the IF-command

digitalWrite(LEDblue, HIGH); //...the LED should light up

delay(5000); //5000 miliseconds (5 seconds) long

digitalWrite(LEDblue, LOW); //after 5seconds the LED should turn off

} //close the program part of the IF-command

else

{ //open the program part of the else-command

digitalWrite(LEDblue, LOW); //the LED shouldn't light up

} //close the program part of the else-command

} //with this bracket the whole loop parts gets closed

25

RGB LED

Task: We want a RGB LED to light up in different colours.

Required equipment: Microcontroller / one RGB LED / three resistors each with 200 Ohm /

Breadboard / cables

What is an RGB LED? The RGB LED is an LED that is able to shine in different colours.

RGB stands for the three colours “red”, “green” and “blue”. Inside the RGB LED are three

separate LEDs available, which can be turned on and off individually and shine in three

different colours. That is reason behind the four contacts of the RGB LED. The longest one

can be (depending on the version) the anode(+) or the cathode(-). The other contacts

belong to the different colours.

Version a; “Common cathode” – The longest contact of the RGB LED is “-”. In this case the

other three contacts are supposed to get positive gate voltage (5V) “+”.

26

 Duration of Output Sensibility

Version b: “Common anode” – The longest contact of the RGB LED is “+”. This means that

the other contacts are supposed to get negative gate Voltage (GND) “-”.

It is possible to create much more colours if you temper the colours. For example; you will

get “yellow” by tempering “blue” and “green”.

There is a simple way to find out what RGB LED version you have. Just switch “+” and “-”

on the LED. Only if the LED is connected the right way it will work and shine.

27

Setup with version a:

Setup for version b:

28

The Arduino is a digital Microcontroller. On its Outputs it only can “turn on” 5V or “turn off”

5V. But to create the different colours, the three colours of the LED have to be actuate

more specific. That is the reason to use the Pulse Width Modulation. The PWM can be

used on the pins with the little wave in front of the number.

The PWM lets the voltage pulse from +5V to 0V. So the voltage gets turned off and on for

only milliseconds. With a really high PWM the 5 V signal nearly gets constant on the pin.

With a low PWM it is the other way around and the 5 V signal is barely there (This is only a

reduced summary, so you should look it up on the internet, if you need more information).

With PWM it is possible to get nearly the same effect as if the voltage would vary.

The following codes are working for both RGB versions:

Sketch 1:

With this code you can turn on and off the three different colours one by one.

int LEDblue=3; //Blue colour on pin 3

int LEDred=5; //Red colour on 5

int LEDgreen=6; //Green colour on pin 6

int b=1000; //b defines a break of 1000ms (1 second)

29

int brightnessblue=150; //Value between 0 and 255 – defines the brightness of

//the single colour

int brightnessred=150; //Value between 0 and 255 – defines the brightness of

//the single colour

int brightnessgreen=150; //Value between 0 and 255 – defines the brightness of

//the single colour

int dark=0; //Value 0 stands vor 0V voltage – therefore LED off

void setup()

{

pinMode(LEDblue, OUTPUT);

pinMode(LEDgreen, OUTPUT);

pinMode(LEDred, OUTPUT);

}

void loop()

{

analogWrite(LEDblue, brightnessblue); //Turn on blue

delay(b); //Break

analogWrite(LEDblue, dark); //Turn off blue

analogWrite(LEDred, brightnessred); //Turn on red

delay(b); //Break

analogWrite(LEDred, dark); // Turn off red

30

analogWrite(LEDgreen, brightnessgreen); //Turn on green

delay(b); //Break

analogWrite(LEDgreen, dark); //Turn off green

}

Sketch 2:

With this code always two different colours will be turned on and off together. This way we

are able to create the colours yellow, turquoise and purple.

int LEDblue=3; //Blue colour on pin 3

int LEDred=5; //Red colour on 5

int LEDgreen=6; //Green colour on pin 6

int b=1000; //b defines a break of 1000ms (1 second)

int brightnessblue=150; //Value between 0 and 255 – defines the brightness of

//the single colour

int brightnessred=150; //Value between 0 and 255 – defines the brightness of

//the single colour

int brightnessgreen=150; //Value between 0 and 255 – defines the brightness of

//the single colour

int dark=0; //Value 0 stands vor 0V voltage – therefore LED off

void setup()

{

31

pinMode(LEDblue, OUTPUT);

pinMode(LEDgreen, OUTPUT);

pinMode(LEDred, OUTPUT);

}

void loop()

{

analogWrite(LEDgreen, brightnessgreen); //Green and red on = yellow

analogWrite(LEDred, brightnessred);

delay(b);

analogWrite(LEDgreen, dark); //Green and red off = yellow off

analogWrite(LEDred, dark);

analogWrite(LEDgreen, brightnessgreen); //Green and blue on = turquoise

analogWrite(LEDblue, brightnessblue);

delay(b);

analogWrite(LEDgreen, dark); //Green and blue off = turqouise off

analogWrite(LEDblue, dark);

analogWrite(LEDred, brightnessred); //Red an blue on = purple

analogWrite(LEDblue, brightnessblue);

32

delay(b);

analogWrite(LEDred, dark); //Red and blue off = purple off

analogWrite(LEDblue, dark);

}

33

Motion detector

Task: As soon as a motion gets detected, a piezo speaker should beep.

Required equipment: Arduino / motion detector / breadboard / cables / piezo speaker

Learning content: Read out the voltage values of a motion detector and use them for an

output.

The motion detector, also known as PIR sensor,

is very simply constructed. Once it has detected

a movement, it puts out 5V voltage on a pin.

Now the microcontroller just has to read this

voltage out and processes it.

The duration of the of the output signal and

the sensibility (reach) of the motion detector

can be adjusted with the two knobs on it

(see image on the right).

 The plastic lens on top of the motion

 detector can easily be removed.

 Underneath of it, there is the IR-

 detector and the lettering of the three

 contacts. GND (-), OUT (Signal output),

 VCC (+).

 As shown in the image on the left.

34

Furthermore there is a jumper on the

bottom of the detector. This jumper

makes it possible to switch between

two different modes.

1) Jumper on the outermost: The signal

of the output will be maintained for a

certain time, after the detector has

recognized a movement. But after that

certain time the signal will be deactivated,

even if movement could be detected. The

signal will be activated again after some time.

2) The other mode gets activated if

the jumper is placed on the two inner

contacts. The output signal will stay

constantly active, as long as a

movement is detected.

This mode is recommended for

projects with Arduino.

35

Setup:

Code:

int piezo=5; //The word “piezo” stands for the value 5.

int movement=7; //The word “movement” stands for the value 7.

int movementstatus=0; //The word “movementstatus” stands for the value 0. Later

//on there will be saved if a movement is detected or not

void setup()

{ //The setup starts here

pinMode(piezo, OUTPUT); //The pin connected to the piezo speaker (pin 5) is

//defined as an output.

36

pinMode(movement, INPUT); //The pin connected to the moition detector (pin 7)is

//defined as an input.

}

void loop()

{ //The loop part starts here

movementstatus=digitalRead(movement); //The value on pin 7 is read out

//(command: digitalRead). The result will be safed under “movementstatus”. (HIGH

//means 5V and LOW means 0V)

if(movementstatus==HIGH) //if a movement is detected (voltage signal high) ..

{ //open program part of the IF-command

digitalWrite(piezo,HIGH); //..the piezo should beep

delay(5000); //5 seconds long

digitalWrite(piezo, LOW); //after that the piezo should be quiet

} //close program part of the IF-command

else

{ //open else-command

digitalWrite(piezo,LOW); //the piezo speaker should be turned off

} //close else-command

} //close loop part

37

Photo resistor

Now it will get a little bit more complicated!

Task: A LED should light up if it gets dark or rather the photo resistor is covered.

Required equipment: Arduino/ One LED / Resistor with 200 Ohm / Resistor with 10K

Ohm / Breadboard / Cables / Photo resistor

Learning content: Read out voltage and show out the values via “serial monitor”.

Read out voltage:

We want the microcontroller to recognize how bright it is by reading out a photo resistor.

For this purpose we will use a simple physical principle. If two consumers are connected in

one circuit (series connection), they also “share” the applied voltage. Example: Two same

lamps are connected in series with 6V applied voltage. With a voltmeter we are now able

to measure only 3V on each lamp. If we would connect two different lamps (with different

values of resistance), than we would be able to measure two different voltage values on

each lamp, for example: 1,5V and 4,5V.

A photo resistor changes its resistance depending on the luminous intensity. We will use

this effect to get a value for the brightness or darkness by reading out the applied voltage.

To create a split voltage we need to connect the photo resistor with a resistor (1-10K Ohm,

depending on what kind of photo resistor is used. The resistor should have nearly the

same value of resistance as the used photo resistor.) in series. Now the circuit should get

connected to ground (GND) and 5V (see setup).

The microcontroller is able to read out analogue signals (voltage) and work with the

values. For this function the analog Inputs on the board are used. They are converting the

voltage into a number, with that we are able to work with. 0 Volt corresponds to the number

0 and the highest measurable value 5V corresponds to the number 1023 (0 to 1023 are

1024 numbers = 10 Bit). Example: A voltage of 2,5V is measured, so the microcontroller

would give out the value 512 (1024:2).

38

The “serial monitor”

An important tool of the arduino software is the “serial monitor”. With this “serial monitor” it

is possible to show the read out data from the microcontroller (numbers or text). It is quite

useful, because you will not always have an LCD-Monitor connected to show some values.

In this sketch we will use the “serial monitor” to get the values shown, which the

microcontroller get from the photo resistor.

Why does that make sense? If we would want the LED to light up if it gets dark, there must

be a function in the sketch, that defines: “If the value of the photo resistor gets lower that x,

the LED is supposed to light up.” Therefore we have to know how high x is, while it starts

to get darker.

Solution: We are going to display the value “x” from the photo resistor (while it is getting

darker) on the “serial monitor”. Knowing this, we are later on able to get a function like this

in the sketch: “If the read out voltage of the photo resistor gets lower that “x”, turn on the

LED”.

Setup:

39

Sketch:

int input=A0; //”input” stands for the value “A0” (Label of the analog port 0)

int LED=10; //”LED” stands for the value 10

int sensorvalue=0; //variable for the sensor value with 0 as starting value

void setup() //The setup starts here

{

Serial.begin(9600); //Start the communication with the serial port. We will

//need this to get the read out value of the photo resistor on the serial

//monitor.

pinMode (LED,OUTPUT); //The pin connected with the LED gets defined as an

//output. We won't need to define the analog pin.

}

void loop()

40

{ //loop part starts here

sensorvalue=analogRead(input); //Read out the voltage of the photo resistor

//and save it under “sensorvalue”

Serial.print("Sensor value ="); //Show “Sensor value=” on serial monitor

Serial.print(sensorvalue); //Send the value of the photo resistor as a number

//between 0 and 1023 to the serial monitor

if(sensorvalue > 512) //If the sensor value gets higher than 512…

{

digitalWrite(LED,HIGH); //...the LED should light up...

}

else

{

digitalWrite(LED,LOW); //else the LED should be turned off

}

delay(50); //short break where the LED is turned on or off.

} //This last bracket closes the loop part

//If the sensor value for example at normal brightness only reaches 100 (this

//value depends on the used resistor, the brightness and the current

//direction), it would make sense to use a lower value than 512 (for example

//90), to turn on the LED. You can look up the current sensor value on the

//“serial monitor”. You //can find it in the Arduino software at “tools”.

41

42

Potentiometer

Task: The speed of a blinking LED should be regulated with a potentiometer.

Required equipment: Arduino / Potentiometer / Breadboard / Cables

Learning content: Reading out a potentiometer and working with sensor data on a

mathematical basis (in this case for the duration of a break).

There are three contacts on a potentiometer. The outer ones should be connected with +

and –. The contact in the middle has to be connected with a analog Input on the

microcontroller. If the potentiometer gets turned around, the pin in the middle will give out a

voltage between 0V and 5V. Potentiometer on the most left position: 0V and potentiometer

on the most right position: 5V, depending on the way it's connected (+ and -).

We will use the already fixed LED with pin 13 on the microcontroller. But it's also possible

to connect an additional LED on the Breadboard like it's shown here:

43

Sketch:

int input=A0; //The word “input” now stands for the value “A0”

int LED=13; //”LED” now stand for the value 13

int sensorvalue=0; //Variable for the sensorvalue with 0 as starting value

void setup()

{ //The setup begins here

pinMode (LED,OUTPUT); //The pin 13 connected to the LED is defined as an output

}

void loop()

{ //The loop part begins here

sensorvalue= analogRead(input); //The voltage at the potentiometer is read

//out and gets saved as a number between 0 and 1023 under “sensorvalue”

digitalWrite (LED,HIGH); //Turn on LED

delay(sensorvalue); //The value, which is saved under “sensorvalue” defines

//how long the LED will light up (milliseconds)

digitalWrite(LED, LOW); //Turn off LED

delay(sensorvalue); //The value, which is saved under “sensorvalue” defines

//how long the LED is turned off (milliseconds)

} //End of the loop part

//Now the loop part will be restarted. If the read out value of the

//potentiometer has changed, the time between the on and off stage will also

//change. The LED will be blinking faster or slower. The longest possible delay

//in this sketch can be 1023ms (milliseconds) long. If needed longer delays are

//also possible. Therefore you would have to add a litte mathimatical function

44

//into the sketch. Example: The line “sensorvalue=analogRead(input);” has to be

//changed into “sensorvalue=analogRead(input)*2;”. The saved sensor value will

//be increased by the factor of 2. So the longest delay would be 2046ms and so

//on ..

45

Temperature measurement

Task: Read out the temperature with theTMP36 sensor and display the temperature on the

serial monitor.

Required equipment: Arduino / Breadboard / cables / temperature sensor TMP36 / external

power-supply

The sensor has three terminals. 5V, GND, and the pin for the temperature signal. On this

pin, the sensor puts out a voltage between 0 and 2.0 volts.

0V = -50 ° C and 2.0V = 150 ° C.

The sensor is supposed to be quite precise (±2°C) between -40°C and 150°C, according

to the manufacturing. The voltage on this pin must be read out by the microcontroller

board and then has to be converted into a temperature value.

- CAUTION: If the sensor is connected incorrectly it gets destroyed.

- Use a external power supply for more sensor accuracy (as possible 9V battery or 9V

power supply).

46

Code:

int TMP36 = A0; //The sensor should be connected to the analog Pin A0. We will

//call the pin “TMP36” from now on

int temperature = 0; //Under the variable “temperature” we will later on save

//the temperature value

int temp[10]; //To get good values we have to read out some values to get the

//mean value out of them. The square brackets “[10]” create ten different

//variables at one time:„temp[0]“, „temp[2]“, „temp[3]“, …till… „temp[9]“.So

//with this spelling [10] we will save some space.

int time= 20; //The value after “time” sets the distance between each

//measurement.

void setup() {

Serial.begin(9600); //In the setup we are going to start the serial

//communication, to see the temperature values on the serial monitor. The

//microcontroller will be sending values to the computer. The serial monitor can

//be started at “Tools” in the arduino software.

}

void loop() { //main part

temp[0] = map(analogRead(TMP36), 0, 410, -50, 150);

delay(time);

temp[1] = map(analogRead(TMP36), 0, 410, -50, 150);

delay(time);

temp[2] = map(analogRead(TMP36), 0, 410, -50, 150);

delay(time);

temp[3] = map(analogRead(TMP36), 0, 410, -50, 150);

delay(time);

47

temp[4] = map(analogRead(TMP36), 0, 410, -50, 150);

delay(time);

temp[5] = map(analogRead(TMP36), 0, 410, -50, 150);

delay(time);

temp[6] = map(analogRead(TMP36), 0, 410, -50, 150);

delay(time);

temp[7] = map(analogRead(TMP36), 0, 410, -50, 150);

delay(time);

temp[8] = map(analogRead(TMP36), 0, 410, -50, 150);

delay(time);

temp[9] = map(analogRead(TMP36), 0, 410, -50, 150); //Until here the

//temperature gets read out ten times. In between there is always a little

//break. We will take a closer look on the used command:

//temp[1]=map(analogRead(TMP36),0,410,-50,150);

//temp[1] – The name of the first variable.

//“map(a,b,c,d,e)” - This is a “Map command”. With this command it is possible

//to change a read out value (a) from one region between (b) and (c) into a

//region between (d) and (e).

//In our case this means: The sensor value gets read out right in the map

//command “analogRead(TMP36)”. The value should be between 0 and 410 (= values

//between 0V and 2V at the analog port). The sensor outputs this voltage values

//if it measures temperature between -50°C and 150°C. With the “map command”

//these values get converted into degree values between -50°C and 150°C.

temperature=(temp[0]+temp[1]+temp[2]+temp[3]+temp[4]+temp[5]+temp[6]+temp[7]+tem

p[8]+temp[9])/10; //Everything in one row! In this line, all ten values get

//summarized and get divided by ten. This average value gets saved under

//“temperature”.

48

Serial.print(temperature); //Now the temperature values gets send to the

//computer and can be looked up on the serial monitor.

Serial.println("degree");

}

Extension of the sketch:

If the temperature reaches 30°C, a noise from the piezo speaker appears.

int TMP36 = A0;

int temperature = 0;

int temp[10];

int time= 20;

int piezo=5; //Piezo speaker on pin 5

void setup() {

Serial.begin(9600);

pinMode (piezo, OUTPUT); //Pin 5 is an output

}

void loop() {

temp[0] = map(analogRead(TMP36), 0, 410, -50, 150);

delay(time);

temp[1] = map(analogRead(TMP36), 0, 410, -50, 150);

49

//...

temp[9] = map(analogRead(TMP36), 0, 410, -50, 150);

temperature=(temp[0]+temp[1]+temp[2]+temp[3]+temp[4]+temp[5]+temp[6]+temp[7]+tem

p[8]+temp[9])/10; // Everything in one row!

Serial.print(temperature);

Serial.println("degrees");

if (temperature>=30) //If the temperature reaches 30°C or more….

{

digitalWrite(piezo,HIGH); //...the piezo speakers beeps..

}

else

{

digitalWrite(piezo,LOW); //...it is quiet.

}

}

50

Measurement of distance

Task: Measure a distance with the HC-SR04 ultrasonic sensor and show the result on the

serial monitor.

Required equipment: microcontroller board / cables / Breadboard / HC-SR04 ultrasonic

sensor

How does the ultrasonic sensor work?

The sensor has four pins.

a) 5V (+) b) GND (-) c) echo d) trigger

The contacts 5V and GND are meant for the power supply. Trough the "trigger" pin the

sensor gets a short signal (5V) from the microcontroller board to create a sound wave. As

soon as the sound wave hits a wall or other objects, it will be reflected and comes back to

the ultrasonic sensor. When the sensor detects this returned sound wave, the sensor will

send a signal to the Arduino microcontroller trough the "echo" pin. The Arduino-board

measures the time between the transmission and the return of the sound wave, and

converts this time into a distance.

Setup:

51

Code:

int trigger=7; //”trigger” on pin 7.

int echo=6; //”echo” on pin 6.

long time=0; //The value “time” will safe the time between transmission and

//returning of the soundwave.

long dist=0; //The value “dist” will save the calculated distance. It will

//start with “0”. Instead of “int” we are using “long” for this value, to save a

//bigger number.

void setup()

{

Serial.begin (9600); //Starting the serial communication. It will send the

//data from the arduino board to the computer to show it on the serial monitor.

pinMode(trigger, OUTPUT); //”trigger” (Pin 7) is an output.

pinMode(echo, INPUT); //”echo” (Pin 6) is an input.

}

void loop()

{

digitalWrite(trigger, LOW); //Low voltage on the trigger pin to produce a

//clear signal.

delay(5); //….for 5 milliseconds.

digitalWrite(trigger, HIGH); //Creating the soundwave.

delay(10); //..for 10 milliseconds.

digitalWrite(trigger, LOW); //Stop creating the soundwave.

52

time = pulseIn(echo, HIGH); //With the command pulseIn (Capital “i” in the

//front of the “n”) the arduino board measures the time between sending and

//receiving the soundwave.

dist = (time/2) / 29.1; //This calculation transforms the measured time into

//the distance in centimeter. (The sound needs 29,1 seconds for one centimeter.

//The time gets divided with two, because we only want to get one distance and

//not the two ways that the soundwave has to take).

if (dist >= 500 || dist <= 0) //If the distance gets over 500cm OR under 0cm,

//the measurement is no longer accurate.

{

Serial.println("No measurement"); //So the serial monitor displays “No

//measurement”

}

else //otherwise

{

Serial.print(dist); //The calculated distance is shown on the serial monitor.

Serial.println("cm");

}

delay(1000); //This command causes a short break between the measurements.

}

Extension of the sketch

If the distance is less than 80cm, the piezo speaker should beep.

53

int trigger=12;

int echo=13;

long time=0;

long dist=0;

int piezo=5; //Piezo speaker on pin 5.

void setup()

{

Serial.begin (9600);

pinMode(trigger, OUTPUT);

pinMode(echo, INPUT);

pinMode(piezo, OUTPUT); //The pin (5) connected to the piezo is a output.

}

void loop()

{

digitalWrite(trigger, LOW);

delay(5);

digitalWrite(trigger, HIGH);

delay(10);

digitalWrite(trigger, LOW);

time = pulseIn(echo, HIGH);

dist = (time/2) / 29.1;

54

if (dist >= 500 || dist <= 0)

{

Serial.println("No measurement");

}

else

{

Serial.print(dist);

Serial.println("cm");

}

if (dist <= 80) //If the measured distance gets 80 or shorter...

{

digitalWrite(piezo,HIGH); //..the piezo should beep

}

else //If not ...

{

digitalWrite(piezo,LOW); //..the speaker should be quiet.

}

delay(1000);

}

55

Reverse warning system

With this code we are able to create a reverse warning system. Additional to the ultrasonic

sensor we are going to connect a LED with pin 12.

Are you able to construct a reverse warning system without any images?

int trigger=7;

int echo=6;

long time=0;

int LED=12;

long dist=0;

void setup()

{

Serial.begin (9600);

pinMode(trigger, OUTPUT);

pinMode(echo, INPUT);

pinMode(12, OUTPUT);

}

void loop()

{

digitalWrite(trigger, LOW);

delay(5);

56

digitalWrite(trigger, HIGH);

delay(10);

digitalWrite(trigger, LOW);

time = pulseIn(echo, HIGH);

dist = (time/2) / 29.1;

if (dist >= 500 || dist <= 0)

{

Serial.println("No measurement");

}

else

{

Serial.print(dist);

Serial.println("cm");

}

if (dist <= 40)

{

digitalWrite(LED, HIGH);

delay(dist*3);

digitalWrite(LED, LOW);

delay(dist*3);

}

57

}

58

Usage of an infrared remote

Task: Read out the signal from an infrared remote

with an infrared sensor.

Required equipment: Arduino / breadboard / cable /

infrared sensor / infrared remote control

With an infrared receiver, the Arduino board can

receive the commands of an infrared remote control.

The data are sent with infrared light from remote control

to the receiver. Since our eyes can not perceive this light,

we can not see this light. With a little trick you can see

the light. Take your mobile-phone and look with the

camera on the infrared diode of the remote while pressing

a button on the remote. You will see the flashing infrared

diode on the display of the mobile phone.

Setup:

59

The sketch is a variation of the sketch “IRrecvDemo”, and can be downloaded together

with the very important IR-Remote-Library on the following website:

https://github.com/shirriff/Arduino-IRremote

Download the zip-package and copy the files into your “libraries” directory in the arduino

software. Rename the downloaded directory to "Irremote".

Now you can open the sketch in the sample-files in the arduino-software:

File -> Examples -> IRremote -> IrrecvDemo

Code:

/*

* IRremote: IRrecvDemo - demonstrates

receiving IR codes with IRrecv

* An IR detector/demodulator must be

connected to the input RECV_PIN.

* Version 0.1 July, 2009

* Copyright 2009 Ken Shirriff

60

https://github.com/shirriff/Arduino-IRremote

* http://arcfn.com

*/ //Information about the original program “IrrecvDemo”.

#include <Irremote.h> //The program uses a library in this sketch. This saves

us a lot of work, with reading out the code of the infrared light.

int RECV_PIN = 11; //The contact which outputs the data gets connected with pin

11.

IRrecv irrecv(RECV_PIN); //Here we are defining an object, that is supposed to

read out the infrared sensor on pin 11.

decode_results results; //This command defines that the read out infrared data

gets saved under “results”.

void setup()

{

Serial.begin(9600); //In the setup we are starting the serial connection, to

see the data from the remote on the serial monitor.

pinMode (13, OUTPUT);

irrecv.enableIRIn(); //This command initializes the infrared sensor.

}

void loop()

{ //The loop part is quite short because of the used library.

if (irrecv.decode(&results)) { //If data is received...

Serial.println(results.value, DEC); //..they should show up on the serial

monitor as decimal number (DEC).

irrecv.resume(); //Receive the next value.

61

}

}

Pressing the "1" button on the infrared remote control causes (in this case) the serial-

monitor to write the number "16724175". This is the decrypted number code behind this

button.

If you hold the button permanently pressed, the number "4294967295" appears. This is the

code that indicates that a button is pressed continuously. This number does not depend on

which button is pressed.

There can also appear other numbers if a key is pressed only very short or pulsating. In

that case the sensor may not read a unique value.

Extension of the sketch: Switch on a LED by pressing button1 and switch it off with

button2.

#include <Irremote.h>

int RECV_PIN = 11;

IRrecv irrecv(RECV_PIN);

decode_results results;

void setup()

{

Serial.begin(9600);

pinMode (13, OUTPUT); //Pin 13 gets connected with a LED (Output).

62

digitalWrite(13, LOW); //At first the LED should be tuned off.

irrecv.enableIRIn();

}

void loop() {

if (irrecv.decode(&results)) {

Serial.println(results.value, DEC);

if (results.value == 16724175) //If The IR receiver receives the number

//16724175 (button 1)...

{digitalWrite (13, HIGH);} //...the LED gets turned on.

if (results.value == 16718055) //If the IR receiver receives the number

//16718055 (button 2)...

{digitalWrite (13, LOW);} //….the LED gets turned off.

irrecv.resume(); // Receive the next value

}

}

63

Control a servo

Task: A servo has to turn to three different positions. Between the movements there should

be a short break.

Required equipment: Arduino / one servo / three cables

Code:

#include <Servo.h> //Include the servo library

Servo servoblue; //The servo gets the name “servoblue”

void setup()

{

servoblue.attach(8); //The signal line of the servo is on pin 8

}

void loop()

{

64

servoblue.write(0); //Position 1 with an angle of 0°

delay(3000); //Wait 3 seconds

servoblue.write(90); //Position 2 with an angle of 90°

delay(3000); //Wait 3 seconds

servoblue.write(180); //Position 3 with an angle of 180°

delay(3000); //Wait 3 seconds

servoblue.write(20); //Position 4 with an angle of 20°

delay(3000); //Wait 3 seconds

}

LCD Display

Task: Show a text on an LCD Display.

Required equipment: Arduino / potentiometer / 14 cables / breadboard

65

As you may see on the image, the wiring for this project is not that easy. It is because the

LCD has to be connected with pretty many cables. Another difficulty is that there is no plug

strip already on the LCD. You can either solder a plug strip to the LCD or solder the cable

directly to the contacts of the LCD. If you want to solder the cables directly with the LCD

we recommend to use flat cables (e.g. from an old hard drive or an old CD drive). Without

any soldering it is quite impossible to get good results.

The potentiometer is needed to adjust the contrast. The back light of the LCD is powered

with 5V. Because it is difficult to show the lettering on the LCD, in the image underneath

you should try to count the contacts of the LCD. (Example: The first contact from the right

to the left gets connected to GND. The second contact from the right to the left gets

connected to 5V ….). Information: It is easier to use an LCD Keypad shield or an I2C LCD

for more complicated projects because you don't have to take so much time for the wiring

of the LCD. But these two other options are more expensive than the simple LCD module.

Setup:

66

Now if the LCD is successfully connected we are ready to start with the programming.

Like many other components the LCD also needs to revert to a library in the code. This

library is already a component of the arduino software. So you don't have to install

something on your own.

Code:

#include <LiquidCrystal.h> //Load the LCD library

LiquidCrystal lcd(12, 11, 6, 5, 4, 3); //In this line we define which pins on

//the microcontroller get connected to the LCD (Better don't change yet).

void setup() {

lcd.begin(16, 2); //In the setup we indicate how many signs and how many rows

//we are using. In this case: 16 signs in two rows.

}

void loop() {

lcd.setCursor(0, 0); //Start position of the cursor on the LCD (0,0 = first

//character in the first row).

lcd.print("www.funduino.de"); // Write the text “www.funduino.de”

lcd.setCursor(0, 1); //Start position of the cursor on the LCD (0,0 = first

//character in the second row).

lcd.print("good luck!!!"); // Write the text “good luck!!!”.

}

Extension of the sketch: We want to print alternately text on the first and on the second

row. For this example we will use the words “up” and “down”.

67

#include <LiquidCrystal.h>

LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

void setup() {

lcd.begin(16, 2);

}

void loop() {

lcd.setCursor(0, 0); //Start position first sign in the first row...

lcd.print("up"); //..show the word “up”

delay (2000); //Wait 2 seconds

lcd.clear(); //Clear the display

lcd.setCursor(5, 1); //Start position fifth sigh in the second row...

lcd.print("down"); //...print “down”

delay (2000); //Wait 2 seconds

lcd.clear(); //Clear the display

}

The LCD module is especially useful to show sensor values or other outputs from the

microcontroller. You can also find help in the arduino software at the example sketches.

There you can find many different examples at “LiquidCrystal”.

68

Relay shield

Task: Use a relay shield.

Required equipment: Relay shield / Arduino / cables

A relay is a switch, which can be activated with a low current from the Arduino board. So

you can switch on and off electrical things, that need much more power than a Arduino

board can provide.

The relay needs a permanent power supply trough 5V+ and – (In the picture VCC and

GND). With the “IN”-pin, the switch can be activated by the Arduino board. The three

terminals on the left side are meant to be connected with the electrical component that

needs more power than the Arduino can provide. If the relay doesn't get any signal from

the Arduino on the “IN” contact, the contacts A and B are connected. Once the relay gets a

signal from the Arduino the contacts B and C get connected.

ATTENTION: There are two types of relay shields. They differ in the way you get them to

switch. Either you have to connect the “IN” pin to 5V+ on the Arduino, or you have to

connect the “IN” pin to GND on the Arduino. You can easily find out which type of relay you

got. Try connecting the “signal” pin with 5V+ or with GND. The version where the relay

switches (you can hear a loud crack) will be the right version.

For testing purpose, you can use the “blink”-sketch. Instead of the LED, you connect the

output-pin from the Arduino board with the “IN” pin from the relay. With that sketch, the

relays will switch on and off in a 1 second rhythm.

69

Code:

void setup()

{

pinMode(6, OUTPUT);

}

void loop()

{

digitalWrite(6, HIGH); //At this point the relay turns on

delay(1000); //..wait one second

digitalWrite(6, LOW); //turn off the relay again

delay(1000); //...wait a second

}

70

Stepper

Task: A stepper should turn around back and forth.

Required equipment: Arduino / stepper with control board / 6 cables

This stepper is especially useful for small projects with the arduino board. The stepper can

operate without any external power supply. It can get a quite high torque. This is possible

because of a gear, which is installed inside of the metal case in front of the actual step

motor. One full rotation of the drive shaft can be divided in 2048 separate steps. One little

disadvantage of this can be the slow maximum rotation speed.

The stepper gets connected with a control board. This control board supplies the stepper

with enough power, to prevent the digital pins of having to do this. There are two versions

of the control board. One with the outer pins on the top and one with the outer pins on the

bottom. The connection is the same on both versions.

71

Wiring

PIN2 on Arduino board to IN4 on control board !!! 2 with 4 !!!

PIN3 on Arduino board to IN2 on control board !!! 3 with 2 !!!

PIN4 on Arduino board to IN3 on control board !!! 4 with 3 !!!

PIN5 on Arduino board to IN1 on control board !!! 5 with 1 !!!

PIN “GND” on Arduino board to GND on control board

PIN “5V” on Arduino board to VCC on control board

72

The following Code is an example and lets the stepper do one rotation (2048 steps) back

and forth.

#include <Stepper.h> //Load stepper library (already including the arduino

software)

int SPMU = 32;

Stepper myStepper(SPMU, 2,3,4,5);

void setup()

{

myStepper.setSpeed(500);

}

void loop() {

myStepper.step(2048);

delay(500);

myStepper.step(-2048);

delay(500);

}

73

Moisture sensor

Task: We want to measure moisture and display the read out value on the serial monitor.

Required equipment: Arduino / moisture sensor / cables

As the name suggests, the moisture sensor is able to measure moisture. That means that

it can measure the directly adjacent moisture, like Skin moisture or ground humidity, but

not the air moisture. One example of use can be the moisture sensor used to measure the

ground humidity of a plant. If the ground of the plant gets to dry, an alarm could set off or

an automatic water pump system could water the plant. The moisture sensor is also

suitable for measuring a water level, in the region of the sensor.

The way of functioning is quite simple. There is a voltage on the two contacts of the

moisture sensor. The higher the level of moisture gets between the contacts, the better the

currant can flow from one contact to the other. This value gets electronically processed

from the moisture sensor and gets transmitted as an analog signal to an analog input of

the board. Since the board, as described in previous tutorials, isn't able to measure

electrical voltage as such, it converts the analog signal into a numerical value. 0V to 12V

74

corresponds to a numerical value from 0 to 1023 (That are 1024 numbers, since the zero

is counted as the first numerical value).

But the upper level of the moisture sensor is around 800, if the sensor gets completely

under water. The accurate calibration depends on the sensor and the type of liquid/

moisture that is measured (e.g. salt water has a better conductivity so the value would be

higher).

Setup:

The programming of the moisture sensor isn't that complicated and is very similar to the

programming of the potentiometer, because there is just an analog value read out.

int measurement=0; //Variable for the measurement with 0 as starting value

void setup()

{ //The setup begins here

75

Serial.begin(9600); //Starting the serial communication to show the sensor

//values on the serial monitor later on

}

void loop()

{ //The loop part starts here

measurement=analogRead(A0); //The voltage on the moisture sensor gets read out

//and gets saved under “measurement”

Serial.print("Moisture measurement:"); //Show the words “Moisture measurement:”

//on serial monitor and ...

Serial.println(measurement); //...show the read out moisture sensor value

delay(500); //Short break to avoid to many confusing values on serial monitor

}

Extension of the code:

Now we want a piezo speaker to beep if the value gets under a certain limit.

Here we are going to define “200” as limit.

Code:

int measurement=0;

int beep=6; //”beep” stands for the pin 6, which gets connected with the piezo

void setup()

{

Serial.begin(9600);

pinMode (6,OUTPUT); //The pin 6 gets defined as an output

}

76

void loop()

{

measurement=analogRead(A0);

Serial.print("Moisture measurement:");

Serial.println(measurement);

delay(500);

if (measurement <200) //Starting IF command: If the sensor value gets under

//“200”...

{

digitalWrite(beep, HIGH); //...the piezo should beep...

}

else //..if not...

{

digitalWrite(beep, LOW); //...the piezo should be quiet

}

}

77

Drop sensor

Task: We want to detect a drop of water and display the read out value on the serial

monitor.

Required equipment: Arduino / drop sensor / cables / (piezo and breadboard for the

extension of the sketch)

The drop sensor, or liquid sensor, is able to detect liquid on its surface. A little drop would

already be enough to get a clear measurement.

One example of the usage can be a rain detector. If the drop sensor measures a rain drop,

the Arduino board could e.g. close the blinds, set off an alarm or turn on windshield wipers.

The way of functioning again is quite simple. On the long contacts that are running trough

the surface of the drop sensor a voltage is applied (+ or -). As soon as a liquid e.g. in form

of a drop touches the surface of the sensor, a small current flows from one contact to

another. The sensor converts this value into an analog signal and transfers it to the

microcontroller. The microcontroller, as mentioned in other tutorials, isn't able to read out a

voltage and has to convert the analog signal into a numerical value. 0V to 12V

corresponds to a numerical value from 0 to 1023 (That are 1024 numbers, since the zero

is counted as the first numerical value).

If the drop sensor is completely dry the value would be “0”. Whenever a drop of water

touches the contacts of the sensor the value would be at about “480”. The more drops

78

are touching the surface of the sensor, the higher the value would get.

Setup:

See image on page 58 (The two cables on the top (black and red) and the piezo speaker

on the breadboard will be needed later on).

The programming of the moisture sensor isn't that complicated and is very similar to the

programming of the potentiometer or the moisture sensor, because there is just an analog

value read out.

int measurement=0; //Variable for the measurement with 0 as starting value

void setup()

{ //The setup begins here

Serial.begin(9600); //Starting the serial communication to show the sensor

//values on the serial monitor later on

}

void loop()

{ //The loop part starts here

measurement=analogRead(A0); //The voltage on the drop sensor gets read out and

//gets saved under “measurement”

Serial.print("Moisture measurement:"); //Show the words “Moisture measurement:”

//on serial monitor and ...

Serial.println(measurement); //...show the read out moisture sensor value

delay(500); //Short break to avoid to many confusing values on serial monitor

}

79

Extension of the code:

Now we want a piezo speaker to beep as soon as a rain drop touches the sensor. As limit

we are going to use the sensor value 400, because if a drop touches the sensor we are

expecting a value at about 480.

Setup:

Code:

int measurement=0;

int beep=6; //”beep” stands for the pin 6, which gets connected with the piezo

void setup()

{

Serial.begin(9600);

pinMode (6,OUTPUT); //The pin 6 gets defined as an output

80

}

void loop()

{

measurement=analogRead(A0);

Serial.print("Moisture measurement:");

Serial.println(measurement);

delay(500);

if (measurement >400) //Starting IF command: If the sensor value gets higher

//than “400”...

{

digitalWrite(beep, HIGH); //...the piezo should beep...

}

else //..if not...

{

digitalWrite(beep, LOW); //...the piezo should be quiet

}

}

81

RFID Kit

Task: Read out the UID of a RFID tag and display the UID as one contiguous decimal

number on the serial monitor.

Required equipment: Arduino / RFID Kit / cables

The RFID (“radio frequency identification”) reader is used to read out a certain code, which

is send from a RFID transmitter (also called “RFID tag”) by radio. Each RFID tag has only

one unique code. The RFID Kit is useful to realize projects like for example a locking

mechanism or other similar projects in which a person should be identified with a tag.

RFID tags may come in different shapes, like a key chain or a card in credit card format.

On the following image you can see on the left side two RFID tags, on the right the RFID

receiver RFID RC522 and pin header which have to be soldered to the receiver (There are

also versions with already soldered pin headers on the receiver).

82

How does it work? A RFID receiver contains a small copper coil that generates a magnetic

field. An RFID transmitter also includes a copper coil that picks up the magnetic field and

generates an electrical voltage insinde the transmitter. This voltage is used by a small

electronic chip to get it to emit an electrical code by radio. The transmitter directly receives

this code and processes it, so that the microcontroller is able to process the received code.

It is also possible to codify a RFID tag. Due to the complexity it is not mentioned in this

tutorial. But you can find several other tutorials for this on the web.

 Read out and process the data of RFID tags with the Arduino

Required equipment: Arduino UNO or MEGA, RFID reader, at least one RFID tag,

breadboard, cables, one LED, one 200 Ohm resistor

Using a Arduino microcontroller, we want to read out a RFID tag. If it is the right tag the

LED should light up for 5 seconds.

Wiring of the RFID reader with the Arduino board:

Board: Arduino Uno Arduino Mega MFRC522-READER
Pin: 10 53 SDA
Pin: 13 52 SCK
Pin: 11 51 MOSI
Pin: 12 50 MISO
Pin: nothing nothing IRQ
Pin: GND GND GND
Pin: 9 5 RST
Pin: 3,3V 3,3V 3,3V

On the image underneath the RFID reader has soldered pins bent by 90° on it (like the

already soldered version). This way it is possible to plug the reader vertical on the

breadboard.

83

84

Programming

Reading out and processing the data of an RFID receiver would require,as well as other

complex tasks, a lot lines of code. Therefore we are going to use one of many existing

libraries from the internet. The one we used in this tutorial can be found on

https://github.com/miguelbalboa/rfid.To work with the library you have to download it and

save it in the Arduino program folder. You just have to click on “Download ZIP” and save

the unziped data on your hard drive.

You have to unpack the folder into the Arduino software folder and save it under “libraries”.

Usually, the folder has been saved under "C: Programmearduinolibraries…" (If you have

saved it somewhere else you have to use the “libraries” folder there).

After the data is unzipped and saved correctly, there should appear a data with the name

“rfid-master” in the “libraries” folder. Now you MUST delete the hyphen from the name.

So you rename the data into “rfidmaster”. If you have followed this steps correctly, the

library is ready to be used in the Arduino software.

Sketch 1

First of all we are going to read out the UID (“Unique Identification Number”). It is the

individual sign of every RFID tag. We are going to use the sketch underneath (Attention,

the sketch only works if the library has been added to the software the way it is explained

before). This program is only destined for UNO R3 microcontroller. If you want to use

MEGA2560 or other controllers, you have to adjust the pins.

#include <SPI.h> //Include SPI library

#include <MFRC522.h> //Include RFID library

#define SS_PIN 10 //SDA on Pin 10 (different on MEGA)

#define RST_PIN 9 //RST on Pin 9 (different on MEGA)

85

https://github.com/miguelbalboa/rfid

MFRC522 mfrc522(SS_PIN, RST_PIN); //Name RFID receiver

void setup() //Starting setup

{

Serial.begin(9600); //Starting serial connection

SPI.begin(); //set up SPI connection

mfrc522.PCD_Init(); //Initialize RFID receiver

}

void loop() //Loop part starts here

{

if (! mfrc522.PICC_IsNewCardPresent()) //If a card is near by...

{

return; //move on..

}

if (! mfrc522.PICC_ReadCardSerial()) //If a RFID tag has been chosen...

{

return; //move on...

}

Serial.print("The ID of the RFID-TAG is:"); // Show “The ID of the RFID-TAG is:"

//on the serial monitor

for (byte i = 0; i < mfrc522.uid.size; i++)

{

86

Serial.print(mfrc522.uid.uidByte[i], HEX); //Now the UID, which consists out of

//four separate blocks is read out and sent to the Serial Monitor one by one.

//The ending Hex means that the four blocks of the UID output as HEX number

//(including letters).

Serial.print(" "); //The command " Serial.print (" "); " ensures that there is

//a space between the read blocks.

}

Serial.println(); //This line creates a line break on the serial monitor

}

If everything has worked it should look like this on the serial monitor (except of your own

UID):

87

It is not very easy to work with these HEX numbers one after another. So we change the

line " Serial.print (mfrc522.uid.uidByte [i] , HEX) ; " to " Serial.print (mfrc522.uid.uidByte

[i] , DEC ; " . Then you will get the individual parts of the UID as a decimal number.

Sketch 2

Now the UID code is shown as a decimal number, but it is still divided into four blocks. We

are going to change the code in a mathematical way to effect that the UID is shown as a

single contiguous number (decimal number).

Why are we doing this? If we want to use this sketch later on, for example to let a LED

light up or turn a stepper around depending on the right recognized RFID tag, it will be

easier to use a IF command with one contiguous number. Example:

“If the RFID Code is 1031720, a LED should turn for 5 seconds”.

The command would be more complicated this way: “If the first block is 195 and the

second block is 765 and the third block is 770 and the fourth block is 233 a LED should

turn on for 5 seconds”.

A disadvantage of the decimal way is the fact that the sketch can be a little bit unsafe

because not all four blocks (max. 12 numbers) can be shown as a contiguous number.

If you want it to be completely safe you would have to test every single block.

#include <SPI.h>

#include <MFRC522.h>

#define SS_PIN 10

#define RST_PIN 9

MFRC522 mfrc522(SS_PIN, RST_PIN);

88

void setup()

{

Serial.begin(9600);

SPI.begin();

mfrc522.PCD_Init();

}

void loop()

{

if (! mfrc522.PICC_IsNewCardPresent())

{

return;

}

if (! mfrc522.PICC_ReadCardSerial())

{

return;

}

long code=0; //We are using “code” as a new variable to save the UID as

//contiguous number later on. By using “long” instead of “int” we are able to

//save a longer number.

for (byte i = 0; i < mfrc522.uid.size; i++)

{

code=((code+mfrc522.uid.uidByte[i])*10); //Now the four blocks are read out and

//the code gets “stretched” by the factor 10 every passing (Actually, we should

//use the factor 1000, but the number would become too large).

}

Serial.print("The Card number is:"); //Finally the number code (you can't say

//UID anymore) gets displayed on the serial monitor.

Serial.println(code);

}

Great, we are now able to get the individual identification number (on the serial monitor)

from a RFID Tag. In this case the number of the tag is 1031720.

89

And now? We want a LED to turn on for 5 seconds if the wanted RFID Tag gets hold in

front of the RFID Reader.

Sketch 3

#include <SPI.h>

#include <MFRC522.h>

#define SS_PIN 10

#define RST_PIN 9

MFRC522 mfrc522(SS_PIN, RST_PIN);

void setup()

{

Serial.begin(9600);

SPI.begin();

mfrc522.PCD_Init();

pinMode (2, OUTPUT); //Pin 2 gets defined as output (here we are going to

//connect the LED)

}

void loop()

{

if (! mfrc522.PICC_IsNewCardPresent())

{

return;

}

if (! mfrc522.PICC_ReadCardSerial())

{

return;

90

}

long code=0;

for (byte i = 0; i < mfrc522.uid.size; i++)

{

code=((code+mfrc522.uid.uidByte[i])*10);

}

Serial.print("The Card number is:");

Serial.println(code);

//Here begins the extension of the sketch

if (code==1031720) //If the number code is 1031720...

{ //Open program part

digitalWrite (2, HIGH); //...the LED on Pin 2 should light up ...

delay (5000); //..for 5 seconds..

digitalWrite (2, LOW); // …and than turn off.

} //End of the program part

} //End of the sketch

91

Tutorials with additional Equipment

Keypad shield

Task: Use a keypad shield with Arduino.

Required equipment: Arduino / Keypad shield

The keypad shield has some advantages over the simple LCD module. It doesn't has to be

wired that complicated and has six push button, which can be used. These six buttons can

be read out trough the analog pins of the microcontroller. The buttons are all connected,

trough different resistors, with a analog pin (A0). That's why the analog pin A0 can only be

used limited for different purposes. The shield doesn't even has the A0 pin.

92

The pins on this site are unchanged
(from the right site: A5,A4,A3,A2,A1...etc.)

The keypad shield can be plugged on the UNO board or the MEGA board for example.

The power supply pins of the keypad shield should be plugged into the power supply pins

of the microcontroller board (on the middle bottom you can find the power supply pins of

the keypad shield. The label VIN or 5V can also help you to find them). The pins on the top

of the Arduino are also used by the keypad shield (pin 0-13). Some of them are used for

the LCD on the keypad shield. The other free pins are combined in a row of slots (see on

the top of the image).

If you want to use these slots, we recommend to solder a connector strip onto them.

One example of a sketch can be the following:

Code:

//Sample using LiquidCrystal library

#include <LiquidCrystal.h>

/***

This program will test the LCD panel and the buttons

Mark Bramwell, July 2010

**/

// select the pins used on the LCD panel

LiquidCrystal lcd(8, 9, 4, 5, 6, 7);

// define some values used by the panel and buttons

int lcd_key = 0;

int adc_key_in = 0;

#define btnRIGHT 0

#define btnUP 1

#define btnDOWN 2

#define btnLEFT 3

#define btnSELECT 4

#define btnNONE 5

93

// read the buttons

int read_LCD_buttons()

{

adc_key_in = analogRead(0); // read the value from the sensor

// my buttons when read are centered at these valies: 0, 144, 329, 504, 741

// we add approx 50 to those values and check to see if we are close

if (adc_key_in > 1000) return btnNONE; // We make this the 1st option for speed

reasons since it will be the most likely result

if (adc_key_in < 50) return btnRIGHT;

if (adc_key_in < 195) return btnUP;

if (adc_key_in < 380) return btnDOWN;

if (adc_key_in < 555) return btnLEFT;

if (adc_key_in < 790) return btnSELECT;

return btnNONE; // when all others fail, return this...

}

void setup()

{

lcd.begin(16, 2); // start the library

lcd.setCursor(0,0);

lcd.print("Message"); // print a simple message

pinMode (2, OUTPUT);

}

void loop()

{

digitalWrite (2, HIGH);

lcd.setCursor(9,1); // move cursor to second line "1" and 9 spaces over

lcd.print(millis()/1000); // display seconds elapsed since power-up

lcd.setCursor(0,1); // move to the begining of the second line

lcd_key = read_LCD_buttons(); // read the buttons

switch (lcd_key) // depending on which button was pushed, we perform an action

{

case btnRIGHT:

{

lcd.print("RIGHT ");

digitalWrite (2, LOW);

94

break;

}

case btnLEFT:

{

lcd.print("LEFT ");

break;

}

case btnUP:

{

lcd.print("UP ");

break;

}

case btnDOWN:

{

lcd.print("DOWN ");

break;

}

case btnSELECT:

{

lcd.print("SELECT");

break;

}

case btnNONE:

{

lcd.print("NONE ");

break;

}

}

}

95

I²C Display

Task: Show a text on an I²C LCD Module.

Required equipment: microcontroller (in this example UNO R3), LCD with I²C module,

cables

The LCD module with the already soldered i²C module on it, makes it possible to use an

LCD without the complicated wiring. This can be useful for more complex projects. Another

difference to the simple LCD is, that the module on the back of the LCD, already has got a

knob for the adjusting of the back light.

96

Wiring: The connection of the I²C LCD is very simple. The module has only four contacts.

GND gets connected to GND on the Arduino, VCC to 5V on the Arduino, SDA with the

analog Input A4 and SCL to the analog Input A5.

LCD >> UNO

GND >> GND

VCC >> 5V

SDA >> A4

SCL >> A5

Attention!: The MEGA2560 microcontroller has its own SDA and SCL pins. You can find

them on pin 20 and pin 21.

97

Programing:

We will need another library to work with the I²C LCD, which isn't already installed in the

arduino software. You can download the zip for example here:

https://github.com/fdebrabander/Arduino-LiquidCrystal-I2C-library .

After you have downloaded the library you have to add it to the arduino software.

You can easily do this at the arduino software at “Sketch” then “Include Library” and

“add .ZIP Library..”. Now you can use the library while writing a sketch.

Sketch:

#include <Wire.h> //Include Wire library

#include <LiquidCrystal_I2C.h>//Include the previous downloaded

//LiquidCrystal_I2C library

LiquidCrystal_I2C lcd(0x27, 16, 2); //Here we are going to define what kind of

//display we are using. In this case it is one with 16 signs and 2 rows.

void setup()

{

lcd.begin(); //In the setup part we are starting the LCD (without anything

//inside the brackets, because we defined the LCD already).

}

void loop()

{

lcd.setCursor(0,0); //At the loop part the I²C LCD is programed just like the

//simple LED

lcd.print("Funduino GmbH");

98

https://github.com/fdebrabander/Arduino-LiquidCrystal-I2C-library

lcd.setCursor(0,1); // lcd.setCursor to define sign and row where the text

//should start

lcd.print("Good Luck!"); // lcd.print to show text on the LCD

}

Extension:

Just like with the simple LCD, you can show the result of measurements on the I²C LCD.

Example code (moisture sensor gets connected to pin A0):

#include <Wire.h>

#include <LiquidCrystal_I2C.h>

LiquidCrystal_I2C lcd(0x27, 16, 2);

int measurement=0;

void setup()

{

lcd.begin();

}

void loop()

{

measurement=analogRead(A0); //The value on A0 gets read out and saved under

“measurement”

99

lcd.setCursor(0,0); //”Measurement:” is shown in the first row

lcd.print("Measurement:");

lcd.setCursor(0,1); //In the second row we want to show the read out value of

the moisture sensor

lcd.print(measurement);

delay(500);

}

100

	Preface
	1. Preface to the Arduino tutorials

	2. Hardware and Software
	2.1 Hardware
	2.1.2 Description of typical equipment
	2.1.2.1 Breadboard
	2.1.2.2 LED (light emitting diode)

	2.2 Software
	2.2.1 Installation
	2.2.1.1 Installation and set up of the Arduino software
	2.2.1.2 Installation of the USB driver

	3. Programming
	Basic structure of a sketch:
	1. Name variable
	2. Setup (absolutely necessary for the program)

	Tutorials:
	Blinking LED
	Alternately blinking LED
	Fading LED
	Light and sound
	Push button and LED
	RGB LED
	Motion detector
	Photo resistor
	Potentiometer
	Temperature measurement
	Measurement of distance
	Usage of an infrared remote
	Control a servo
	LCD Display
	Relay shield
	Stepper
	Moisture sensor
	Drop sensor
	RFID Kit

	Tutorials with additional Equipment
	Keypad shield
	I²C Display

